Improving Outcomes, Pediatrics

They think tractors are sexy.


This is more of a fun read with summer coming up and provides an interesting glimpse into America.

They looked at all pediatric related lawnmower accidents from 1990-2014 from a 100-hospital sample they felt to be representative of US ED’s.  Overall, lawn-mower related injuries have gone down by almost 60% since 1990 – hooray for Darwin! Interestingly, there is a bimodal distribution of injuries, with ~15,000 total visits over the study period for 2 year olds, ~7,500 for those ages 7-9, and steadily rises after age 9 until accidents peak at about 20,000 total visits over the study period for 15-17 year olds.

In comparing the <5 year old age group to those 13-17 years old, the youngin’s were more often injured via contact with a hot surface (40% vs 5%), and fell off more (13% vs 4%).  This makes intuitive sense as they young tykes like to touch things they shouldn’t (particularly unsupervised), and some folks just HAVE to capture the moment with junior on their lap.

Also filed under WTF, is a 7.5% rate of injury for those under 5 years as the OPERATOR (vs 37% as bystander and 21% as passenger).  I mean, a four year old as an operator of a lawn mower?  Who possibly thinks this is a good idea?  Likewise, with 40% injuries for those under 4 caused by burns – this is something that could be easily fixed by not letting the wee ones around the mower as it cools.

10.6% of those under 4 years old with lawn-mower related injuries are admitted – many of these are probably preventable by common sense.  I guess they’re learning from Kenny Chesney at a young age.

Standard
Improving Outcomes, Pediatrics

Baby LPs, ultrasounds, and fragility

c7eaa8c515aa5093efbc9031424c5bd9

 

How fitting that the SMACCdub talk, What Scares You, has recently been released, and, to some extent, discusses pediatric bleeding. Well, this paper discusses high risk peds (febrile infant <60 days) and (post LP) bleeding, and whether or not ultrasound assisted guidance helps.

SPOILER ALERT: (it probably does).

From February 2007-December 2007 (wow, talk about a knowledge translation delay), the authors attempted to enroll 46 total patients to either standard LP without ultrasound vs ultrasound assisted LP. Here’s one key point – while ultrasound guidance means direct visualization of the needle into the desired space (like for central lines or paracentesis), ultrasound assisted means that landmarks were sonographically visualized, and then they marked the skin and estimated how deep was too deep for the needle, then performed the LP (without direct visualization.-Basically they performed an ultrasound to determine a “maximum safe depth” to limit needle advancement to avoid traumatic taps, since this is a common element of LP failure in this age group.

Patients with known spinal abnormality or VP shunt were excluded, and the procedures were done by either a house officer or pediatric NP with MD oversight (so, I’m not certain how applicable this is to those of us with significant experience in this age group). Unfortunately, the study was terminated prior to reaching their goal of enrolling 23 patients into each group due to academic calendar demands of the lead author (21 vs 22 patients in either arm – meh.) Success was defined as <10k RBC and whether or not CSF was obtained. Their 5 month historical failure rate was 44%.

The groups did not differ in terms of prematurity, patient weight or length, there was a lower median age in ultrasound assisted group (38 days vs 45 days p=0.02), which may give them a bit more of an uphill battle. The results are seen below:

screen-shot-2016-12-16-at-3-58-43-pm

 

On first glance, these look good – less frequent traumatic taps, more frequently obtaining CSF with NNTs of 3.7 and 5.6 respectively. However, with such a small sample size, a Fragility index of 1, and having house officers and NP’s do the tap (with an unclear level of experience), I’m not certain this is broadly applicable to all providers, particularly when you add that 19 sono-assisted attempts are not enough to reach 80%  success in this study.  With that said, we commonly perform interventions with much lower NNTs with higher risks to the patient than a few ultrasonic waves. This is a cant hurt, will probably help intervention that we should probably be utilizing more frequently for all of our patients, not just our pediatric population.

For a great review on this topic check out sonomojo for more on ultrasound use for LPs.

Standard
Improving Outcomes, Improving Throughput, Mythbusting, Pediatrics, Pediatrics, Pediatrics

SCI still rare in kids.

This paper demonstrates that once again, kids are quite durable.

The authors looked at 3701 patients under 19 years old evaluated for a cervical spine injury. Of the 44 patients with clinically significant cervical spine injury (CSI), 32 had plain films, none of which missed an injury.

32 out of 3701… or 0.86%

-There were ZERO patients under two years old with a CSI

Here is the caveat- one injury begets another. Of the 32 patients with CSI, ten (31%) had multiple lesions, with plain films not identifying all lesions in 4 patients. Given that, I think its fair to say CT (or admission for MRI) is warranted once an abnormality is found.

In summary, relevant cervical injuries in kids are rare (<1%), and plain films are a reasonable screening tool. CT is once again rarely needed, but beware since one injury seemingly begets another. I pretty much agree with the authors on this one,

Our calculated 100 % sensitivity (90% on PECARN, finding 168 of 186 CSI) does come with a large confidence interval and it should be expected that plain films sensitivity for CSI is likely lower in clinical practice. However, the small risk of missed injuries from plain films must be balanced against the increased risk of malignant trans- formation from performing CT scans on all children with suspected CSI.

Standard
Improving Outcomes, Pediatrics

Peds Concussions last a looong time

Little Billy is a star hockey player at 13 years old.  So much so, that he is pushing the envelop and playing with the 14-16 year old class.  Billy gets checked into the glass one day and visits your ED, clearly concussed.  He’s dizzy, easily irritated by family, nauseated, and, of course, has a headache.  How long will these symptoms last? 

The Zurich Protocol suggests that most symptoms are resolved within 10 days, with 5-10% having prolonged symptoms.

However, this is the second study I’ve seen that suggests a prolonged duration in pediatrics.  This prospective cohort study of patients aged 13-18 years of age with an ED diagnosis of concussion were referred to one of 3 hospital-affilated sports medicine clinics.  The patients were evaluated using a variety of methods (neurological exam, computerized neurocognitive testing, post concussion symptom score), with duration of symptoms the main outcome.  Mean symptom duration was 44.5 days, with 48% of patients having symptoms beyond 28 days, and 13% of patients having symptoms persisting beyond 90 days (!).  Essentially, the less physically mature the patient, the longer it took for symptoms to resolve – 54.5 days vs 33.4 days to complete recovery.

Given the high likelihood that Billy will have prolonged symptoms, it would behoove those of us on the frontline to educate parents about this, and set up family expectations accordingly.

Standard
Improving Throughput, Mythbusting, Pediatrics, Pediatrics, Pediatrics

Should you MRI Salter Harris 1’s?

As I’ve discussed, oh, once, twice, or maybe three times in the past, ankle or wrist sprains (or even buckle fractures) do NOT need a splint.  Today’s article from JAMA Pediatrics  echoes this sentiment. 

We’ll keep this simple: 271 patients aged 5-12, with a clinically suspected Salter Harris Type one ankle fracture were approached, 140 parents consented to participate.  All patients were initially placed with a removable brace (hooray!), then underwent bilateral ankle MRI imaging (?!?! boo!!!) one week later. 

Of the 135 patients that underwent MRI imaging, 4 (3%) had MRI confirmed Salter Harris type 1 fractures, 2 of which had partial growth plate injuries.  108 (80%) pateitnts had ligamentious injuries and 27 (22%) patients had isolated bone contusions.  38 patients had radiographically occult fibular avulsion injuries. 

Importantly, of those with MRI detected fractures, there was no difference in outcomes from those without fractures (82% vs 85.5% on the Activity scale for Kids score).

So… while you can certainly MRI these patients – and find things – the question is, if they are not clinically relevant, why do it in the first place?

Standard
Critical Care, Improving Outcomes, Improving Throughput, Mythbusting, Pediatrics, Pediatrics, Pediatrics, Pulmonary

Do we need to give (alot) more Magnesium to asthmatics?

Some of us have quirky things we like to do that not everyone else does– dexamethasone for sore throats, ketamine for the agitated patient (or anything really), et cetera… This paper looks at one of those things – Magnesium in asthmatics. 

This was a prospective, randomized open-label study of patients between 6 and 18 years of age over a two year period who presented to an ED in Asuncion, Paraguay and were admitted for a severe asthma exacerbation.  Patients were excluded if given antibiotics before or during the ED visit, febrile, or if there was suspicion for infectious etiology.  All patients enrolled had no relief despite 2 hours of treatment which included dexamethasone 0.2mg/kg IV, nebulized salbutamol every 20 minutes up to 5mg and nebulized albuterol every 2 hours.  There were two treatment arms, each with 19 patients: one received a 50mg/kg bolus of MgSO4, while the other group received 50mg/kg/hr/4 hrs (ie, up to 2g / hr for 4 hours – up to 8g total).  Physicians in charge of patient disposition, after the initial 8 hours, were not part of the study group and blinded to the treatment received.  Primary outcome was discharge at 24 hours, with secondary outcomes total LOS and cost implications.  The two groups were similar in terms of age, sex, initial Wood-Downes asthma score, and peak flows.

Despite the numerous downfalls to this study (single center, open-label, prospective, small sample size…), the results are intriguing- bolus magnesium had an average LOS of 48 hours vs 34 hours for high dose prolonged infusions, had a higher cost ($834 vs $603), and fewer patients with a LOS <24 hrs (10.5% vs 47.4%).  It took almost two years to get under 40 patients in this single-center study,  but still, there were no adverse events and no bounceback visits within a week from discharge.  Interestingly, there were no obese patients in the study – so how applicable this study is to the US patient population, I do not know (plus, salbutamol is not widely used for acute asthma in the US).   That, and even for this mag-o-phile 8g per hour for 4 hours seems like alot!

Should this change your practice?  Not quite yet – unless you’re not giving magnesium.  In the meantime, I’ll add another one to the list of trials I’d love to see.

Standard
Improving Outcomes, Neurology, Pediatrics

CDRs- good for you, patients, and lawyers!

One of my favorite tweets ever is the following from Jeff Kline:

Screen Shot 2015-11-23 at 3.42.40 PM

This paper from Academic Emergency Medicine continues to drive home Kline’s point – evidence based medicine is protective – both for the provider medicolegally, and for the patient to be saved from harm’s way of overtesting.

The author’s reviewed WestlawNext (from what I can tell, the closest thing law has to PubMed), for all cases, jury verdicts, settlements, and arbitrations from 1973 (when CT first was used clinically) until January 2014 for all instances of head injuries in which head CT was NOT performed. After trudging through about 1,000 cases in their initial search, the authors eventually found (only) 60 cases in which a head CT was not performed and a provider was sued because of it. Two abstractors independently determined which clinical decision rules applied to that specific case (PECARN, NEXUS, Canadian CT head rule, etc), and if imaging was warranted. Inter-rater agreement was 99.2% for determining tge presence or absence of decision rule indications for CT in a given case, and 98.3% for which specific decision rule applied to a particular case.

The Results: Only 8 out of the 60 cases involved patients under age 18. Among all patients, isolated subdurals were most common (58% of cases), 32/60 died from their injury, while the rest sustained permanent neurologic deficits. Time from when a CT should have been ordered to deterioration or death was <6 hours in 39% of cases, 6-24 hrs in 36% of cases, and >24 hrs in 25% of cases.

The juicy stuff: in all ten cases in which the provider was found negligent, a CT was indicated. Providers settled in 10/11 cases in which a CT was indicated. In the ONE case in which a CT was not clearly indicated involved an MVC with multiple facial fractures and experienced left sided numbness and was scheduled for CT the following day. For all 8 pediatric patients, CT was indicated.

So, if a CT was indicated, and you didn’t do it, good luck.

What about the other cases? Well, The authors do not go into much detail about the necessity of CT for these remaining cases except saying that there were 27 cases which found the provider not liable. This also leaves a few cases outcomes unaccounted for.

All in all, since 1973, there has been a grand total of 60 cases in which a head CT was not done that evolved into a lawsuit.  Many of these cases occurred before the publication of recommended guidelines. In some ways, that is not quite fair – I’d hate to be brought to court for not doing ECMO on a patient because ECMO found its way into standard practice in 10 years.  Regardless, I take this study as a step in the trend of discussing with decision rules with the patient and their family family & documenting clinical decision rule recommendations to minimize the swinging pendulum of both the over and underwork up of patients.

Standard