GI, Improving Outcomes, Mythbusting

NG tubes. just. wont. die.

My angst for the NGT has been explained in a previous post, and while this study adds to said angst, it sadly comes short of putting a nail in the coffin in the debate with surgical colleagues.
This is a retrospective single center study which enrolled 181 ED patients with SBO from September 2013 to Sept 2015, and essentially grouped patients according to whether or not a nasogastric tube was placed (49% of patients did not receive the dreaded NGT). Looking at a multitude of factors, they attempted to tease out items associated with nasogastric tube placement, and if there were any appreciable benefits to NGT placement.

Ultimately, if you are over age 70 (37% NGT+ vs 19% NGT-),  have a malignancy (30% NGT+ vs 17% NGT-), or had a prior SBO (56% NGT+ vs 32% NGT-) you’re more likely to have an NGT because, hey, one good NGT deserves another.  NGT+ patients were also less likely to have “likely / early SBO” (19% NGT+ vs 40% NGT-) on CT imaging as well.

All in all, while I’d love to point at the mean length of stays (7 days for NGT+ vs 4.2 days for NGT-; median 5 days vs 3 days), and non-statistically significant resection rates of 13% vs 9% as indications that the NGT is not needed…. well, we’re not exactly comparing apples to apples. The NGT+ patients were sicker- they were older, had higher malignancy rates, had a slightly higher surgical rate, and were more likely to have “definite SBO” on CT. Sadly, this is not the paper to put the NGT argument to rest.  We still need a larger study, preferably with matched controls, to fully put this dinosaur to rest.


Someone?  please? … anyone? please?

Improving Outcomes

Optimizing the Quinsy

So a few days ago, we discussed management of a peritonsillar abscess; while admit rates from 2012 were roughly 22% with transfer rates at 5.9%, and its probably a tough sell that rates of transfer for on-call specialties such as ENT are down significantly from, say, this 2008 paper from EMRAP paper-chaser Mike Menchine (among others).

So what can we do to optimize these patients?

For one, choosing amoxicillin-clavulanate or cefuroxime/flagyl over amoxicillin might help; as it is associated with decreased failure rates, and a decreased rate of requiring additional procedures.

Likewise, this study, found that despite having more ominous clinical findings (more likely to have trismus, peritonsillar bulges, muffled voice, uvular deviation, dysphagia, etc), as well as having radiographically larger abscesses (2.6cm vs 1.3cm), surgically treated patients were less likely to be admitted (20% vs 11%) –  with high levels of success (97% surgical success vs 95% for those treated medically). Now, perhaps this was because of more aggressive treatment in the surgical arm – they were more likely to have antibiotics in the ED (and yes, they were more frequently dosed with IV antibiotics), as well as steroids (yep, more likely to have IV steroids too), as well as fewer repeat visits. Admittedly, repeat visits were quite high (20% medical treatment vs 14% surgical treatment) – which was higher than in the previous paper discussed, which estimated a 5% repeat visit rate nationally.

So who should stay, who should go, and what to do?  I think to avoid an admission or transfer, it’s my belief that we should be maximally aggressive with Quinsy’s – IV fluids, steroids (10mg dexamethasone seems to be a reasonable), antibiotics (likely a dose of either ceftriaxone or clindamycin), and some form of analgesia (ketorolac, opiates, etc).  While medical management has significant success, it still appears somewhat suboptimal compared to surgical treatment (ie, aspiration or I&D).  Generally, I have not been a believer in IV treatments being better than PO treatments, but this seems to be one of those rare instances where it might matter; particularly if you’re trying to stave off a transfer or admission. Likewise, the immunocompromised, those with poor airways (think those with sleep apnea), the extremes of age (with older than 40 years of age having a prolonged disease course in one study!) , intractable pain, vomiting, or persistent bleeding all should be considered for observation.


Does the Quinsy need draining?

Local cultures are interesting, and variety is the spice of life. So let’s look at the ripened Quinsy fruit, shall we?

It is entirely imaginable that local practice at one tertiary care center is to perform an ED needle aspiration under endocavitary ultrasound guidance for a peritonsillar abscess and discharge the patient, while another within 100 miles may consult ENT to perform an aspiration at bedside and admit the patient.  Likewise, one community center may perform aspiration, admit the patient overnight and consult ENT in the AM, while another community ED may transfer to a nearby tertiary care center because “this patient needs ENT.”

Ultimately, none of the above is necessarily wrong, it just depends on your level of comfort; but perhaps an understanding of the patients likely disease course may change your sentiment a bit.

This is a review of data from multiple sources – the National Ambulatory Health Care Survey of Emergency Departments, the national Emergency Department Sample, and the National Inpatient Sample – to evaluation the treatment outcomes of patients with a Quinsy – also known as a peritonsillar abscess. Ultimately, they find that only 20% of patients had an incision and drainage in the ED, 73% of ED patients were discharged, (5.9% transfer, 21.6% admit) yet, only a 5% revisit rate.

Importantly, medical failure occurred only 12.4% of the time, and surgical failure (a needle aspiraton was considered a surgical intervention) occurred only 3.5% of the time. There was a 2% re-admit rate, with a <2% complication rate for both medically and surgically treated patients.

Rather than transferring patients for ENT evaluation, and providing them with quite the bill for an ambulance, its entirely reasonable to attempt ED aspiration given the low likelihood of surgical failure.  Likewise, its also reasonable to have a risk benefit discussion and explain to the patient that they have about a 10-15% chance of medical failure if they elect to not undergo an invasive procedure, provided you’ve adequately explained indications for returning to the ED; 90% likelihood of success is still quite high and you dont even have to get stabbed in the throat!

In the next post, we’ll discuss ways to optimize your patient, and red flags that aught to trigger an overnight stay.  But for now, you should feel comfortable either medically treating the patient or attempting aspiration before considering transfer.


Staph bacteremia: a riddle, wrapped in a mystery, inside an enigma.

Whew! It’s been awhile! Back to it today, with a personal favorite topic- infectious disease.

This study, in particular, is a reminder that medicine is an incredibly humbling career.

All patients with staph aureus bacteremia at Radboud University Medical Center in the Netherlands between January 2013 and April 2016 were retrospectively examined, with primary outcome being newly diagnosed metastatic infection by 18F‐FDG‐PET/CT (here on out referred to as FDG-PET). Subsequent treatment modifications and mortality outcomes were also examined.

There were 148 high-risk staph aureus bacteremic patients, of which 99 underwent FDG-PET. “High risk” characteristics are associated with metastatic infection, and those characteristics are: community acquisition, signs of infection >48 hours before initiation of antibiotics, fever after 72 hours of appropriate antibiotic therapy, positive blood cultures more than 48 hours after initiation of appropriate antibiotics, or already confirmed metastatic foci at the time of presentation.

Of these 99 staph aureus bacteremic patients that underwent FDG-PET, 73.7% had metastatic focus (73 of 99); 71.2% of these patients with metastatic disease had no sign or symptom of this new focus of disease (52 of 73); and of all 73 patients with metastatic infection, 47 patients (64.4%) were diagnosed with metastatic foci in more than one organ system.

That is, 47% of all high-risk staph bacteremic patients have at least 2 organ systems infected (47/99), many of whom had no signs or symptoms. Wow.

Well, ok, but does this really matter? Maybe we just extend their antibiotics longer?

That is just partially correct. Antibiotics were prolonged 15% of the time, 10% of the time a second antibiotic was added on. 25% of time treatment duration was shortened due to no metastatic focus seen.  But…. Some form of pus drainage occurred 19% of the time (ie, 19% of all patients who underwent an FDG-PET had an otherwise unplanned drainage).

Some other pearls:

Screen Shot 2017-09-22 at 6.32.45 PM

So while I typically focus on EM articles, why do I bring up this paper? It’s not terribly uncommon for us to have the “sepsis bounceback.”  The previously critically ill who now re-presents with fever.  We’re getting a second chance to find the other foci of infection – and frankly, these are not easy diagnoses to make.  Lastly, this paper is a good serving of humble pie- with 71% of patients with a metastatic focus of infection for which they had no sign or symptom.

Staph bacteremia:  trust no one.  Believe nothing.

Improving Outcomes, Mythbusting, Neurology

Early vs late meningitis diagnosis: capturing the needle in the haystack

Needle in the haystack, infectious pathway, take 6.

This is a retrospective study looking at early vs late diagnosis of bacterial meningitis from three hospitals in Denmark (one looking at data from 1998-2014; the other two from 2003-2014). To be eligible, patients had to be >15 years of age, and, obviously, had to be hospitalized with a clinical presentation consistent with possible community acquired meningitis (any combination of headache, neck stiffness, fever, altered mental status, petechiae) with no alternative diagnoses made during or after admission. Furthermore, all patients also had to have a proven bacterial etiology by either: positive CSF culture, positive blood culture and CSF with >10 wbcs, bacteria seen on CSF gram stain, or bacteria in CSF by PCR or antigen analysis.

So what is early and what is late diagnosis? They define “early diagnosis” as being recognized in the ED (1.3 hours to antibiotics median), and “late diagnosis” as, well, not diagnosed in the ED (ie, diagnosed on the wards- 13 hours to antibiotics median). Over roughly 15 years, they saw 358 cases of bacterial meningitis, (~8 cases per year per institute – seems a bit high? They do not mention total number of annual ED visits), with 32% being classified as diagnosed “late.” … so, probably 2-3 cases a year of “late” diagnosis – a true needle in the haystack.

Why the late diagnosis? They tended to be older (65 years of age vs 56), less likely presenting with headache (58% vs 82%), less likely with neck stiffness (36% vs 78%), less likely with fever (59% vs 78%), with the classic triage of AMS, fever, and neck stiffness was only present 20% of the time in the late diagnosis group vs 50% in the early diagnosis…. So, it wasn’t an easy catch.

Why does this matter?  Welp, with early antibiotics having a positive effect on mortality (18% vs 36%) as well as unfavourable outcome (which they do not actually define, 37% vs 66%, in favor of early antibiotics).  This is a HUGE difference in mortality and unfavourable outcomes if you do not catch it early!  … Then again, do we do more harm by giving 1-2g of ceftriaxone to everyone who is a bit altered?  Would the risk of cdiff then outweigh the 2-3 annual misses? I’m not so sure.  What about the recurrent headaches and repeat visits for post-LP headaches?

If you really want to tease out the data a bit, 53% of late diagnosis patients vs 26% or earlier diagnosis patients had a head CT before the LP. 72% of “late diagnosis” patients tentatively had a non-infectious etiology- so let’s explore some of the tentative diagnoses:

loss of consciousness (19 patients)

stroke (12 patients)

intracranial / subarachnoid hemorrhage (7 patients)

impaired mental status (6 patients)

headache (5 patients)

back pain (5 patients)

seizures (5 patients)

loss of vision (2 patients)

(among others)


What I’m seeing here is a a trend towards a neurologic issue (a CT scan, a diagnosis of syncope / seizures, AMS, etc) – which may indicate that the thought of meningitis (or even endocarditis) may not have been entertained. Cant make the diagnosis if you dont think about it. In a similar vein, this diagnosis is rare and runs across a spectrum – on one end, the febrile, meningeal and altered, on the other, the vaguely unwell.  And that, surprisingly, even a 12 hour delay to antibiotics can wreck havoc on the patient.

The take home points?  Be vigilant, entertain the spectrum of disease for meningitis, but remember that every decision you make has consequences, including the decision to, and not to, perform an LP, not to mention the decision to indiscriminately give antibiotics for those “altered”.  Choose wisely, and remember there is no such thing as zero risk.

Improving Outcomes, Improving Throughput, Neurology

Opiates beget Opiates – Headache edition.

This is a study comparing 3 EDs in my homeland of CT and their (mis)use of opiates for headaches over a 14 month period. This compared an academic tertiary care center with an approximate 110,000 annual patient volume; an urban hospital with an approximate 85,000 patient annual volume, and a community ED that sees approximately 19,000 patients annually. A total of 1,222 visits were included for final analysis.

Results? Opiates, are not good, mmmmkay?

Patients given opioids as first line treatment had a 37.7% increase in visits over the study period compared to those who were not given opioids. If you were given opioids as first line, 36.0% required rescue treatment compared to 25.1% in those who were not given opioids. Strangely, female patients were significantly more likely to have opioids ordered than male patients (38.2% vs 24.2%).

Need more reason not to give opiates? Patients not given opioids had a 30.3% reduction in length of stay.

I’m surprised these numbers are so high.  As a community EM AP, I’m embarrassed at these numbers – A shocking 58% of headaches in a community setting were given opiates as first line compared to 6.9% of those at the academic center). Then again, opiates beget opiates.  Opiates lead to repeat visits, more rescue meds, and an increased length of stay, without an improvement in patient satisfaction with opiates.  I question how often those in the community ED just gave opiates to avoid conflict.

Just.  Stop.  Giving.  Opiates.  For.  Headaches.  NOW.

Critical Care, Improving Outcomes, Mythbusting

FOAMed: embracing the skeptics, push dose edition.

Embrace the skeptics. Seek them out. They’re actually your greatest allies.  Even when they express concerns over FOAM’s beloved push-dose pressors.

This paper reviews three cases of push dose pressor usage at their institution over an unnamed time period.

1) A post-op patient (“with known blood loss”) with hypotension in transport (no BP or MAP measurements given), and rather than optimize the slurry of midazolam, fentanyl, hydromorphone the patient was currently receiving, push-dose phenylephrine was utilized.  Except that 50 mg rather than 50 mcg was given, and propofol was then given to treat the resultant hypertension.  Now, they also suggest fluid boluses and blood, but since it was in transport… I dont necessarily think push dose was wrong, and I’m not sure where they would have gotten blood from since they were in transit, but yes, the providers certainly could have used phenylephrine concomitantly with toning back on the sedation package.

Take on case one: Tough case. You’re in transport, so options are limited.  Good thought, room for improvement.

2) A post-laminectomy patient who was receiving a norepinephrine infusion developed Afib RVR and was treatment with diltiazem IV boluses followed by continuous infusion. The patient developed asymptomatic hypotension (again, no BP or MAP measurements given) and push dose phenylephrine was given.  Unfortunately 1000 mcg was given rather than 100mcg of phenylephrine.  All while norepinephrine was still at the bedside, waiting to be restarted & titrated.

Take on case two: Dont get ahead of yourself, you’ve likely got more time than you think. Do the basics well.  Slow is smooth and smooth is fast. 

3) A hypotensive patient with angioedema who had epinephrine doses of 100 mcg, 300 mcg, 500 mcg and 1mg all intravenously (!), rather than the intended 5-20mcg.  The authors mention that the patient did not get IM epinephrine.  Being in a situation that demands to push 4 rounds of IV epinephrine must be a sticky one; I’m sure tensions were running high in the resuscitation bay.

Take on case 3: This was probably a pants-crapping case to be involved in.  Things probably could be done in tandem (IM epi while prepping IV).  Again, slow is smooth and smooth is fast.  You also fight the way you train.  I’m sure this was a nerve-racking case to be involved in.

The authors readily admit that they cherry pick cases- and in an email to the author, these cases came from anesthesia, EM, and critical care providers – attendings, fellows, and residents.  Also, in their paper they state, “we feel the time taken to manipulate these concentrations to provide small doses of vasopressor actually take the same amount of time as admixing and initiating continuous infusion vasopressor. “

But… Could you do that in transport?  What about facilities where norepinephrine has to come from pharmacy?

I *partially* agree with the author’s call for a more thought out process, and I think that this can be a call for more appropriate training (mentally, simulations, etc) prior to implementation.  Using push-dose pressors without being able to pull up how to mix and give them is akin to saying “I heard it on a podcast” without digging into the data yourself.  Perhaps maybe premixed vials handy are not the worst idea, hey, maybe we can get a push dose pressors dispenser akin to a fast food restaurant straw dispenser!  I do not agree with completely giving up pushing the boundaries and settling for “par for the course” when there is potential to do better.  Joe Bellezzo managed to do everything wrong on his first ECMO cannulation, but it did not stop the group from refining their approach and pushing the envelop to improve the next patient’s care.