GI, Improving Outcomes, Mythbusting

NG tubes. just. wont. die.

My angst for the NGT has been explained in a previous post, and while this study adds to said angst, it sadly comes short of putting a nail in the coffin in the debate with surgical colleagues.
This is a retrospective single center study which enrolled 181 ED patients with SBO from September 2013 to Sept 2015, and essentially grouped patients according to whether or not a nasogastric tube was placed (49% of patients did not receive the dreaded NGT). Looking at a multitude of factors, they attempted to tease out items associated with nasogastric tube placement, and if there were any appreciable benefits to NGT placement.

Ultimately, if you are over age 70 (37% NGT+ vs 19% NGT-),  have a malignancy (30% NGT+ vs 17% NGT-), or had a prior SBO (56% NGT+ vs 32% NGT-) you’re more likely to have an NGT because, hey, one good NGT deserves another.  NGT+ patients were also less likely to have “likely / early SBO” (19% NGT+ vs 40% NGT-) on CT imaging as well.

All in all, while I’d love to point at the mean length of stays (7 days for NGT+ vs 4.2 days for NGT-; median 5 days vs 3 days), and non-statistically significant resection rates of 13% vs 9% as indications that the NGT is not needed…. well, we’re not exactly comparing apples to apples. The NGT+ patients were sicker- they were older, had higher malignancy rates, had a slightly higher surgical rate, and were more likely to have “definite SBO” on CT. Sadly, this is not the paper to put the NGT argument to rest.  We still need a larger study, preferably with matched controls, to fully put this dinosaur to rest.

 

Someone?  please? … anyone? please?

Standard
Improving Outcomes, Mythbusting, Neurology

Early vs late meningitis diagnosis: capturing the needle in the haystack

Needle in the haystack, infectious pathway, take 6.

This is a retrospective study looking at early vs late diagnosis of bacterial meningitis from three hospitals in Denmark (one looking at data from 1998-2014; the other two from 2003-2014). To be eligible, patients had to be >15 years of age, and, obviously, had to be hospitalized with a clinical presentation consistent with possible community acquired meningitis (any combination of headache, neck stiffness, fever, altered mental status, petechiae) with no alternative diagnoses made during or after admission. Furthermore, all patients also had to have a proven bacterial etiology by either: positive CSF culture, positive blood culture and CSF with >10 wbcs, bacteria seen on CSF gram stain, or bacteria in CSF by PCR or antigen analysis.

So what is early and what is late diagnosis? They define “early diagnosis” as being recognized in the ED (1.3 hours to antibiotics median), and “late diagnosis” as, well, not diagnosed in the ED (ie, diagnosed on the wards- 13 hours to antibiotics median). Over roughly 15 years, they saw 358 cases of bacterial meningitis, (~8 cases per year per institute – seems a bit high? They do not mention total number of annual ED visits), with 32% being classified as diagnosed “late.” … so, probably 2-3 cases a year of “late” diagnosis – a true needle in the haystack.

Why the late diagnosis? They tended to be older (65 years of age vs 56), less likely presenting with headache (58% vs 82%), less likely with neck stiffness (36% vs 78%), less likely with fever (59% vs 78%), with the classic triage of AMS, fever, and neck stiffness was only present 20% of the time in the late diagnosis group vs 50% in the early diagnosis…. So, it wasn’t an easy catch.

Why does this matter?  Welp, with early antibiotics having a positive effect on mortality (18% vs 36%) as well as unfavourable outcome (which they do not actually define, 37% vs 66%, in favor of early antibiotics).  This is a HUGE difference in mortality and unfavourable outcomes if you do not catch it early!  … Then again, do we do more harm by giving 1-2g of ceftriaxone to everyone who is a bit altered?  Would the risk of cdiff then outweigh the 2-3 annual misses? I’m not so sure.  What about the recurrent headaches and repeat visits for post-LP headaches?

If you really want to tease out the data a bit, 53% of late diagnosis patients vs 26% or earlier diagnosis patients had a head CT before the LP. 72% of “late diagnosis” patients tentatively had a non-infectious etiology- so let’s explore some of the tentative diagnoses:

loss of consciousness (19 patients)

stroke (12 patients)

intracranial / subarachnoid hemorrhage (7 patients)

impaired mental status (6 patients)

headache (5 patients)

back pain (5 patients)

seizures (5 patients)

loss of vision (2 patients)

(among others)

 

What I’m seeing here is a a trend towards a neurologic issue (a CT scan, a diagnosis of syncope / seizures, AMS, etc) – which may indicate that the thought of meningitis (or even endocarditis) may not have been entertained. Cant make the diagnosis if you dont think about it. In a similar vein, this diagnosis is rare and runs across a spectrum – on one end, the febrile, meningeal and altered, on the other, the vaguely unwell.  And that, surprisingly, even a 12 hour delay to antibiotics can wreck havoc on the patient.

The take home points?  Be vigilant, entertain the spectrum of disease for meningitis, but remember that every decision you make has consequences, including the decision to, and not to, perform an LP, not to mention the decision to indiscriminately give antibiotics for those “altered”.  Choose wisely, and remember there is no such thing as zero risk.

Standard
Improving Outcomes, Improving Throughput, Neurology

Opiates beget Opiates – Headache edition.

This is a study comparing 3 EDs in my homeland of CT and their (mis)use of opiates for headaches over a 14 month period. This compared an academic tertiary care center with an approximate 110,000 annual patient volume; an urban hospital with an approximate 85,000 patient annual volume, and a community ED that sees approximately 19,000 patients annually. A total of 1,222 visits were included for final analysis.

Results? Opiates, are not good, mmmmkay?

Patients given opioids as first line treatment had a 37.7% increase in visits over the study period compared to those who were not given opioids. If you were given opioids as first line, 36.0% required rescue treatment compared to 25.1% in those who were not given opioids. Strangely, female patients were significantly more likely to have opioids ordered than male patients (38.2% vs 24.2%).

Need more reason not to give opiates? Patients not given opioids had a 30.3% reduction in length of stay.

I’m surprised these numbers are so high.  As a community EM AP, I’m embarrassed at these numbers – A shocking 58% of headaches in a community setting were given opiates as first line compared to 6.9% of those at the academic center). Then again, opiates beget opiates.  Opiates lead to repeat visits, more rescue meds, and an increased length of stay, without an improvement in patient satisfaction with opiates.  I question how often those in the community ED just gave opiates to avoid conflict.

Just.  Stop.  Giving.  Opiates.  For.  Headaches.  NOW.

Standard
GI, Mythbusting

Haloperidol- one anti-emetic to rule them all.

When all else has failed, and the patient does not meet admission criteria, where do patients go?  Obs, of course!  I view it as a valuable tool to augment my ED armamentarium.  Specifically, for instances like, say, gastroparesis or cyclic vomiting.

This randomized, double-blind, placebo-controlled trial was performed at two urban hospitals looking at patients with a previous diagnosis of gastroparesis comparing conventional therapy + placeo to conventional therapy + 5mg of IV haloperidol.  They looked at pain severity and nausea every 15 minutes for 1 hour.  Secondary outcomes were disposition status (hospital admission or discharge), ED length of stay, and nausea resolution at 1 hour.  Sadly, they only looked at 33 patients total over a two year study period.

While the two groups were similar in terms of the conventional therapy received, in the haloperidol group, disposition was made sooner and more patients were discharged home, with a significant reduction in pain at one hour (on a scale of 0-10, a mean improvement of 5.37 vs 1.11 in favor haloperidol), as well a reduction in nausea at one hour (scale of 0-5, improvement of 2.7 vs 0.72 in favor of haloperidol).  Fewer patients were admitted (26.7% vs 72.2%) who received haloperidol, with median length of stay shorter for haloperidol (4.8 hrs vs 9 hrs).  Surprisingly, patients in the haloperidol group experienced no adverse events, including QT prolongation and dystonic reactions.  This is probably due to small sample size.

This does not address haloperidol as sole treatment,  and at only a few dozen patients in this study, certainly does not solidify haloperidol’s use as first line.  However, it does add to the pile of data showing haloperidol as safe and efficacious in these patients.  As an aside, if your hospital is anything like mine, you can not give haloperidol IV, so I’ve trialed 5-10mg IM.  Over the last 4-5 years, I’ve become fond of IM haloperidol for refractory vomiting, and (anecdotally) I’ve used it dozens of times with high rates of success.

So yes, better analgesia, decreased nausea, fewer admissions, and decreased LoS with haloperidol.  Pretty much everything you want.  I just wish a broader study in non-specific abdominal pain with vomiting would compare haloperidol as singular treatment and compare it to standard care.

Look, there are some patients who are vomiting so profusely that they seemingly require an exorcism.  For those patients, I think adding a bit of haloperidol for symptomatic relief does not have much downside, I just wouldnt go mixing multiple QT prolonging agents at once.

So, I ask, whats downside?

Standard
Cardiology, Cardiology, Critical Care, Improving Outcomes, Improving Throughput, Mythbusting, Pulmonary, Radiology, Radiology

Probing the dyspneic patient.

For undifferentiated dyspnea, how would you like to have an accurate diagnosis in 24 minutes?

I love this study.

Basically, for all dyspneic patients (not trauma related, and over age 18), 10 EP’s were given an H&P, vital signs, and an EKG, as well as access to a Chest X-Ray, Chest CT, cardiologist performed echo, and labs including an ABG.

These same 2,683 patients, in tandem, had point of care ultrasound testing (lung, IVC, echo). Here’s the catch – the ultrasonographers were only provided the H&P, vital signs, and EKG then asked to make a diagnosis. The treating provider was blinded to POCUS diagnosis.

These numbers for diagnostic accuracy of POCUS are astounding.

+LR for acute HF? 22 (-LR 0.12)

+LR for ACS? 105 !!!

+LR for pneumonia? 10.5 (-LR 0.13)

+LR for pleural effusion? 95 (-LR 0.23)

+LR for pericardial effusion? 325!!! (-LR 0.14)

+LR for COPD/asthma? 22 (-LR 0.14)

+LR for PE? 345!!!

+LR for pneumothorax? 4635!!! (-LR 0.12)

+LR for ARDS? 90

Yes, for certain things like pneumonia, the difference in p-values between tradition means and POCUS diagnosis was not significantly different, but what about volume status? I cant imagine blindly giving 30 cc/kg would benefit the patient with a plethoric IVC and pleural effusion. There is some elegance a play here.

Additionally, sure, ED diagnosis for ACS had a higher LR, but they also had a cardiologist performing and interpreting echos in the ED (a rather rare siting in a US ED I would imagine) – without much improvement in their -LR (0.53 vs 0.48). For PE, the -LR of POCUS was predictably mediocre if not outright bad (0.6), while the -LR for ED diagnosis of PE, with the benefit of chest CT, was -0.10.

Now look, I get that these EP’s were quite sono-savvy. They all had 2+ years of experience, over 80 hours of ultrasound lessons & training, with at least 150 lung and 150 ED echo’s under their belt. The diagnosis was made in 24 minutes with POCUS in comparison to 186 minutes for traditional means. And while most of us can not do a year+ ultrasound fellowship, and neither can we all be as savvy with the probe as these authors (or Matt, Mike, Jacob, Resa, Laleh, etc) – it does not mean we shouldnt try. You can still greatly increase your yield just by practicing. To boot, the cognitive offload you experience by saving yourself a few hours by (correctly!) knowing which direction you are heading with a patient is an immense boon to both your mental heath & your patients well being.

Standard
Improving Throughput, Mythbusting

More No-Value Care: pre-procedure INR for cirrhotics

You have a cirrhotic patient in front of you. They need a procedure. You reflexively order a cbc, comprehensive metabolic panel, and PT/INR because you’d like to know about their platelets/ liver enzymes / coagulation ability.

Or maybe it’s a consultant who refuses to do a procedure the patient needs until you order these tests.

And then the platelets come back at 40; or maybe the INR returns at 1.4. Now what?

Do we need to transfuse platelets or FFP? Well, this case series looked at 852 consecutive cirrhotics from Jan ’11 – March ’14 who needed an invasive procedure the decision to transfuse PLT / FFP at attending discretion. Here’s a breakdown of their patient demographics:

screen-shot-2017-02-18-at-7-47-52-pm

And the number of complications:

screen-shot-2017-02-18-at-7-48-04-pm

Now, sadly, despite discussing the World Health Organization classification for bleeding events, they did not really get into the severity of bleeding events. With that said, complications were unrelated to platelet count, INR, CHILD classes, and MELD score. Only 1 in 379 paracentesis had a bleeding event, and only 2 of 228 TIPS/ CVC/ PICC/ hemodialysis/ I&D procedures had an event.

Perhaps most importantly, while attempts to normalized PLT and INR values, PLT/FFP transfusions barely affected the corresponding abnormalities, the scheduled invasive investigations were carried out in the presence of still subnormal parameters- with no or only a few bleeding complications.

Ergo, I agree with the authors, – “we have verified clinically the futility of this recommendation.”

Standard
Improving Outcomes, Improving Throughput, Radiology

Ultrasound MiniFellowship, eh?

Are you looking for a bridge after taking an ultrasound course at a conference?  Do you feel like you need a bit more oversight until you get comfortable with probe in hand?  Are you having trouble conceptualizing what it means to have ultrasound guide your practice in the critically ill?… Read on.

I recently had the pleasure of attending a CCUS POCUS mini-fellowship –  it was everything I was hoping for & more- and has pushed me to be a better clinician.

First, a blurb about ultrasound fellowships.  As a PA, there isn’t really any hands on US training during our programs.  There likely is some POCUS for PA EM residents – but most practicing EM PA’s are not residency trained.  Therefore, we’re at the mercy of our co-workers who may (or may not) have any US training.  It’s hard to learn POCUS when you don’t have someone over your shoulder to guide you!

I had done a few ultrasound courses, but was struggling to really implement it into my practice regularly.  Ultimately, this was my own fault.  I was repeatedly told to pick up the probe and practice.  Literally, every sono-savvy person has told me this.  A large part of my problem was that I did not pick up the probe immediately after courses to drill down on fundamentals – and scan every person regardless of their complaint.  This is not meant to disrespect those that I took courses with before – they were *extremely* helpful and I’m incredibly thankful for their expertise! – the fact that I continued to seek out ultrasound training is a testament to prior courses showing me the importance of developing this tool set.  Now, onto Canada.

I ended up taking a 2 day course with Philippe Rola in Montreal.  Philippe is extremely responsive via email, we had spoken on the phone a few times prior to my arrival as well.  He’s friendly, approachable, and has been doing mini-fellowships since 2009 (!).

I was looking to optimizing views, particularly on patients with challenging anatomy (I mean, have you seen the average American BMI recently?), and what started with, “where the hell is the IVC” turned into, “This is a plethoric IVC.”  While it might be that the 3rd (or is it 4th?) time is the charm for courses for me, and that I would get it eventually via spaced repetition, but there is something about practicing on patients with acute illness and watching Rola make decisions based on POCUS in real time that helps put the pieces together a bit faster.

I believe the main advantage of this US course is the real time feedback on real patients… and if you are there for more than one day, you get to watch the ICU story unfold.  You see about 10-12 patients in their ICU, and a handful of ICU consults on the floors or in the ED.  You may or may not go to a rapid response, and see how it really makes a difference in the heat of the moment.  Fortunately, this is not reminiscent of your student days when the mentor says, “You’ll have to sit this out, this one’s mine, sorry.”  Philippe was extremely patient with me in the hypotensive altered patient while I scanned.  He’s excellent at questioning at just the right time to help tie it together- “ok, what are you seeing? A plump IVC and some pleural effusions in this hypotensive patient?  So whats your next step?”

To maximize your experience, I would strongly encourage you to have 1-2 specific goals in mind like, “I want be able to consistently visualize the IVC and have a few back up views just in case.” Expecting more than 1-2 things is probably spreading yourself thin.  You’re not going to become a pro overnight.  Be upfront & honest with Rola – he can tailor to your skill level- whether it be an assessment of valvular function or just wanting to visualize the heart.  Philippe had recommended 2-3 days at a time, which I agree with – I think after 2-3 days you reach the point of diminishing returns and “get full.”  You need some time to process what you’ve learned, and to practice on your own (before going back!).

Upon my return home, I made it a point to utilize the probe on my next shift.  If at all possible, I would recommend arranging shifts to be “main ED” shifts when you get back home such that you see the belly pain, shortness of breath, and chest pain patients so that you can apply what you learned immediately.  I did this on my first shift back with the hope of scanning 5 patients or more – I literally brought the machine with me when I walked into the room.  Surprisingly, I thought it would slow me down.  This was not the case at all.  I also realized a major benefit that I was not expecting.  The cognitive offloading of using the probe and eliminating some of the guess work kept me fresher longer. I saw more patients than average, with sicker than average patients, and it did not feel like taxing shift at all.  I didnt have to task switch to check on that xray or CT nearly as much as I usually do (though I was still ordering what I usually would to confirm suspicions since I’m still early in POCUS training)…. I would be interested to see the throughput of docs using POCUS vs those not, and I’d also like to see the level of “decision fatigue” at the end of a shift – I’m convinced that POCUS provides a significant cognitive offload to the EM provider, and the POCUS’ers are less fatigued at the end of their shift.

Bottom line, I think I needed other courses to whet my appetite and open the door, and I needed Montreal to push me through the door and get me to start practicing more.  If you work in an environment where you don’t have much POCUS backup and want to learn with one of the best and don’t want to break the bank, come to Montreal!

Standard